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Abstract. The paper is devoted to the convergence properties of finite-difference local descent 
algorithms in global optimization problems with a special y-convex structure. It is assumed that the 
objective function can be closely approximated by some smooth convex function. Stability properties 
of the perturbed gradient descent and coordinate descent methods are investigated. Basing on this 
results some global optimization properties of finite-difference local descent algorithms, in particular, 
coordinate descent method, are discovered. These properties are not inherent in methods using exact 
gradients. 
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1. I n t r o d u c t i o n  

Consider the unconstrained multiextremal optimization problem 

F(x)---~ inf (1) 
x E E  k 

where E k is a k-dimensional Euclidean space. 

DEFINITION 1.1. The function ~b(.) is called strongly convex on E k with 
parameter l > 0 if 

~ (~X  1 "ar (1 -- h)X2) <~ a~b(x~) + (1 - ,t)4~(x2) - lh(1 - a ) n x  I - x 2 1 1 2 / 2  

for any x1, x 2 ~ E k and h, 0 ~< A ~< 1. [] 

Problems of the type (1) sometimes possess the following important structural 
property. 

DEFINITION 1.2. The problem (1) is said to be y-convex structured if there 
exists a strongly convex (with parameter l > 0) and differentiable function ~b(- ), 
V~b(. ) E ~(Ek ,  L) ,  such that 

14,(x) - e(x)l  ~< y Vx ~ Ek 
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(see Figure 1). S~(X, L) denotes the class of Lipschitz continuous functions on 
X C E k with constant L > 0. [] 

We may say that 4~(" ) is a convex y-skeleton of the objective function F(- ). Note 
that F(- )  may be multiextremal and nonsmooth and that a suitable skeleton 
function ~b(. ) is usually unknown. 

REMARK 1.3. Global optimization problems with the similar structural prop- 
erties were considered in [1]. [] 

If y is small, then the y-convex problem (1) is well approximated by the smooth 
convex problem 

4)(x) ~ min (2) 
X~Ek 

where qS(. ) is continuously differentiable on Ek, V~b(. ) E 5g(Ek, L) and the sets 

Xf = {x~  E~l~b(x )~<f} , f  E R , ,  

are compact. 
Seemingly straightforward approach to solving y-convex structured problems 

(1) is as follows: (i) to obtain a suitable unimodal differentiable approximation 
~b(- ) of the objective function F(- ), for instance, using the formula 

4~(x)=4)(x,~,)=f...fF(x+y)dyx...dyk (3) 
- a  - o r  

F( . )  

X 

Fig. 1. 
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(see [2, 3]); (ii) to solve the problem (2), (3) applying some effective descent 
algorithm. 

Though performing this approach we face great difficulties, i.e., if F( - )  is 
locally Lipschitz continuous, then ~b(-, a) is actually continuously differentiable 
and for any compact X 

lim sup [~b(x, a )  - F(x) t  = 0 
ot---~O x E  X 

but unimodality (and moreover convexity) of qS(-, a) in y-convex structured 
problems is not studied and seems to be doubtful. Furthermore, Problems (2), (3) 
are complicated even when 4,(.,  a) is convex, because values of q5(., a) are 
difficult to compute. Certainly, stochastic programming algorithms (see [3]) can 
be used for solving (2), (3), but the efficiency of these algorithms is not high. 

In the present paper another approach to approximate solving of T-convex 
structured problems (1) is proposed. Its mainpoints are as follows: 

(i) Different local descent methods, for instance, gradient descent method and 
coordinate descent method can be used for solving (2). 

(ii) Some of these algorithms have good properties of stability under perturba- 
tions in values of the objective function q5(-), i.e., using in these algorithms 
perturbed values ~(x) instead of exact values ~b(x) we shall obtain approximate 
solutions of the problem (2). 

(iii) Thus, using in these algorithms values F ( x )  instead of values qS(x) we shall 
obtain approximate solutions of the problem (2) and, therefore, approximate 
solutions of the initial problem (1). 

In Section 2 stability properties of the gradient descent method using inexact 
gradients are studied, sharp estimations of attractors are obtained. Stability under 
perturbations of the gradient descent method has been studied before in [3-8]. A 
finite-difference analogue of the gradient method is considered in Section 3. In 
"/-convex structured problems this algorithm possesses some global optimization 
properties, which are not inherent in the gradient method using exact gradients. 
Some special abilities of descent algorithms, using finite-differences, were consid- 
ered in [3, 9]. 

In Section 4 stability under perturbations is explored for the coordinate descent 
method. Due to its stability properties this method may be used in 3~-convex 
problems for the approximate search of the global optimum (Section 5). More- 
over it is shown that the coordinate descent method has some advantages in 
comparison with the simplest finite-difference version of the gradient descent 
method. 

2. Stability of  the Perturbed Gradient Descent Method 

Consider the unconstrained optimization problem: 

(x)--~ min , 
x @ E  k 

(2) 
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where ~b(. ) is continuously differentiable on Ek, Vqff" ) E  ~ ( X ' ,  L) ,  X '  is an 
open set, 

X' 3 X =  {x ~ Gl~(x )  ~<f},  

X r  0 is compact, f E R 1 . 

The simplest algorithm of the perturbed gradient descent method is as follows: 

X n + l  = X n --~ an(V(O(X n) + A l ( X n ) )  , 

n = 1, 2 , . . . ,  x 1 E X 1 (4) 

here Al(X ) E E k is a perturbation of the gradient V~b(x); the stepsizes {a,} satisfy 

O < a o < - a n < ~ d o < l / L ,  n = l , 2 , . . . ;  (5) 
1 �9 x is an element of the set of starting points X 1. 

A S S U M P T I O N  2.1. Let the perturbation A 1(. ) satisfy the estimation 

lla,(x)ll~<~1 V x ~  x 

with some constant level el >i O. [] 

Set 

~b* = min ~b(x) = min ~b(x); 
x C E  k x E X  

x0(~) = {x ~ GI4(x )  ~ ~* + ~}, 

Xs(~) = (x E xlllV~(x)[I ~ ~}, 

ls(e )=  sup ~b(x), e > / 0 .  
x~Xs(,) 

It is obvious that 

ls(e' )<~ Is(e" ) Ve',  e", 0<~ e'<~ e". 

L E M M A  2.2. (1). I f  oh(. ) is convex on Ek, then 

is(0) = 4,* 

(2). I f  oh(" ) is strongly convex on E~ with parameter l > O, then 

ls(e) <~ 4~* + e2/21, 

Xs (e  ) C Xo(e2/21) Ve >! O. 

Proof. Fix arbitrary e/> Oand x @ Xs(e  ). 
Applying the following estimation 

21(qS(x) - 4*)  ~< l lV~(x)ll  2 

(see Lemma 1.4.3 [5]), we obtain 
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49(x) <<- 49* + e2/21 ; 

x ~ Xo(e2/21). 

The lemma is proved. [] 

ASSUMPTION 2.3. Let 

X ~ : X ~ X s ( e ~ ) .  [] 

We shall observe the behaviour of trajectories of the algorithm (4), (5) with a 
fixed level e 1 of perturbations. 

LEMMA 2.4. Under Assumptions 2.1, 2.3 every trajectory {x"} of(4),  (5)satisfies 

x n E X ,  n = l , 2 , . . .  [] 

Applying Lemma 2.4 and the convergence analysis technique developed in [6], it 
is easy to prove the following 

THEOREM 2.5. Let Assumptions 2.1, 2.3 be fulfilled. 
(1) Then every trajectory {x n } of  the perturbed gradient descent algorithm (4), (5) 

satisfies 

lim sup 6(x n) <~ I s ( e l )  . (6) 

(2) I f  49(" ) is strongly convex on E k with parameter l > 0 then there exist C, q > 0, 
0 < q < 1, such that every trajectory {x n } of  (4), (5) satisfies 

~{x"} C X o (e2/2l) ,  

49(x n)<~49*+ez1/zl+Cq n, n = 1 , 2  . . . .  

(~{x"} denotes the set o f  all limit points due to subsequences {x"}). [] 

REMARK 2.6. It is easy to see that the estimation (6) is sharp for any problem 
(2) on the considered class of perturbations, i.e., for any 49(. ) there exist a 
starting point x 1 and a perturbation AI(. ), [lal(x)ll ~< el VX E X ,  such that the 
corresponding trajectory {2n}, 3~1 = X 1, o f  (4) ,  (5)  satisfies 

49(s ls(e~) , n = 1 , 2 , . . .  [] 

REMARK 2.7. Theorem 2.5 generalizes the corresponding results in [4, 5]. 

3. Global Optimization Properties of the Simplest Finite-Difference 
Version of the Gradient Descent Method 

Let us consider the y-convex structured problem (1). Set 
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g ( x ,  h )  = ( g l ( x ,  h ) ,  . . . , g & ,  h ) )  , 

g i ( x ,  h )  = (F(x I . . . .  , X i _ l  , x i -}- h ,  Xi+ l , . . .  ,Xk) 

- -  F ( x l , . . .  , X i -  1 , X i , Xi+l , " " . ,  X k ) ) / h ,  

i =  1 , 2 , . . . , k ,  h > 0 ,  x ~  E k . 

The simplest finite-difference analogue of the gradient descent method is as 
follows: 

FDG algorithm (FDGA) 

n+l X n n x = - a n g ( x , h ) ,  n = 1 , 2 , . . . ,  

x 1 ~ E  k , 

where for the parameter h it holds h > 0, the stepsizes {an} satisfy (4) and x 1 ~ E~ 
is a starting point. 

LEMMA 3.1. For every h > 0 and x ~ E k [[ g(x, h) -V~b(x)[[ ~< klJ2(Lh/2 + 2)'/h). 
[] 

T H E O R E M  3.2. Let the problem (1) be y-convex structured. Then every trajec- 
tory {x ~ } of  F D G A  satisfies 

k{x"} C {x ~ E~IF(x ) <~ inf F(x') + k (Lh /2  + 27/h)2/21 + 27}.  
x '  ~ E  k 

In particular, when 

h = 2X,/T/L 

we get 

-ft{x"} C {x ~ Ek}F(x ) <~ inf F(x') + 2y(k(LI l )  + 1)}. 
x ' ~ E  k 

Proof. Fix an arbitrary trajectory {x n} of FDGA. Applying Lemma 3.1 and 
Theorem 2.5 we obtain immediately 

~{x"} C {x ~ Ekl&(x ) ~< 6"  + k(Lh /2  + 27/h)2[21}. 

It is obvious that 

{inf F(x) - &*l~< y ; 
x ~ E  k 

therefore 

{x E EklO(x ) <~ 4)* + e} C {x E EglF(x) <~ inf F(x') + e + 23/} 
x ' ~ E  k 

for any e ~ 0. 
Thus, 

li{x ~} C {x E EklF(x) ~ inf F(x')  + 27 + k(Lh /2  + 27/h)2/21}. 
x ~ E k  

The theorem is established. [] 
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Thus, we can see that when the parameter 3' is sufficiently small and condition 
L / l  of the problem (2) is not large it is possible to search approximate global 
solutions of the multiextremal problem (1) using the finite-difference algorithm 
FDGA with the appropriate parameter h, 

h = 2 V y / L .  

The search of the appropriate h may be performed by some adaptive rules. 

4. Stability of the Perturbed Coordinate Descent Method 

The coordinate descent algorithm [10] can be considered as some finite-difference 
analogon of the gradient method. Thus, we shall show that this algorithm when 
used in 3,-convex problems possesses some global optimization properties. 

Let us study convergence properties of the perturbed coordinate descent 
method. 

Consider the optimization problem (2), where the objective function qS(. ) is 
assumed to be continuously differentiable on Ek, V4~ ( . ) C  5f(X', L),  X ' D  X =  
{x E E~I ~b(x) ~< f} is an open set, X r Q is compact, f E R1. 

The simplest algorithm of the perturbed coordinate descent method is as 
follows: 

PCD ALGORITHM (PCDA) 

X n,1 ~ X n 

X n , i + l  

x "'~ + h . e ~ ,  if 

d?(X n'i + hne i )  + mo(x n'l -t- hne i )  < I~)(X n'i) -~ Ao(X n'i) ; 

else x "'i - h , , e i ,  if 

~ ( X  n ' i  - -  h n e i )  4- Ao(X "'i - h , , e i )  < q~(x ' ' i )  + Ao(x "'/) ; 

else X n'i  ; 

i = l , . . . , k ;  

xn+l ~ x n , k + l  . 

[ h . ,  x "+1 ~x "  ; 

hn+l  t Oh n , x n+l = x n ; 

n = 1 , 2 , . . . ,  x I @ X ~ , 

where A0(x ) E Ra is a perturbation of ~b(x); 0, 0 < 0 < 1, is an adapting parameter; 
and e ~ , . . . ,  e k are coordinate vectors, 
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(e i ' e j )={01 ' ,  i=j;i~J; 

i , j = l , . . . , k ;  h i > 0 ;  

x 1 ~ X ~ i s  an element of the set of starting points X 1. 

ASSUMPTION 4.1. Let a perturbation Ao(. ) satisfy the estimation 

IAo(x)l -<  oVx x ,  

with some constant level e o >t O. [] 

ASSUMPTION 4.2. Let 

X 1 C {X ~ g I~(x) ~ f -  2e0}. [] 

It is obvious that X a C X C X'. 
We shall observe the behaviour of trajectories of PCDA with a fixed level e 0 of 

perturbation. 

L E M M A  4.3 Under Assumptions 4.1, 4.2 every trajectory o f  PCDA satisfies the 
estimations 

lim sup ~(X n) ~ ~)(X N) ~- 2e o , 

lira sup (~b(x n) + Ao(xn)) ~< ~b(x N) + e o , N = 1, 2 . . . .  [] 
n-->~ 

C O R O L L A R Y  4.4. Under Assumptions 4.1, 4.2 every trajectory (x  n} o f  P C D A  
satisfies 

X n ~ X ,  n = l , 2 , . . .  [] 

Let us fix an arbitrary trajectory {x n} of PCDA and set 

W = {n E ~dlx" = x n+l  } : {N 1, N 2 , . . . ) ,  

where N i <  Ni+ 1, i =  1 , 2 , . . . ,  M = { 1 , 2 , . . . } .  
It is easy to see that 

[ h  n , n ~ t~ ; 

hn+l 
Oh~ , n E t~ , 

n = l , 2 , . . .  ; 

therefore hue = Oi-lhl , i = 1, 2 , . . .  

L E M M A  4.5. The set ~ is infinite, I~[ = ~(IAI denotes the number o f  elements o f  
the set A ). [] 
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C O R O L L A R Y  4.6. lim,__,= hn = 0 .  [] 

L E M M A  4.7. For every i = 1, 2 , . . .  the inequality 

IIv4)(x /)ll ( 2% L oi_lhl) 
\ o i - l h l  + ~ 

is valid. [] 

L E M M A  4.8. I f  h I > 2 ~ o /  L then 

.mlin \ o i - l h l  + ~ Og-lhl ~ ~/~o L "k/cO + - ~  �9 [] 

Applying Lemmas 4.3, 4.5, 4.7, 4.8, we arrive at 

T H E O R E M  4.9. Let Assumptions 4.1, 4.2 hold and the parameter h I fulfil 

h 1 > 2 ~ o / L .  

(1) Then every trajectory (x  n} of  PCDS satisfies 

(2) I f  4)(" ) is strongly convex on E k with parameter l > 0 then every trajectory 
{x ~ } of  PCDA satisfies 

+ ) . [] 

5. Global Optimization Properties of the Coordinate Descent Method 

Turning back to the 7-convex structured problem (1) let us consider the 
coordinate descent algorithm: 

CD A L G O R I T H M  (CDA) 

X n,1 = X n 

x n'g + h .e  i , if 

xn, i+l ~_ 

F(x n'i + hnei) < F(x ~'g) ; 

else X n ' i -  h,eg , if 

F(xn, i _ hnei) < F(x n'i) ; 

else 

xn, i . 
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i = 1, , k ; X n + l  : "  X n ' k + l  " 

' h  n , x n + l  ~ x n �9 

h n +  1 = 

. O h n  , X n + l  = X n �9 

n = 1 , 2 , . . . ,  x l E E  k ,  

where all denotations are the same as in Section 4. 
Applying the results of Section 4 we obtain 

THEOREM 5.1. Let the problem (1) be y-convex structured. Then every trajec- 

tory {x n } o f  CDA,  with the parameter h I > 2 ~V~-i, satisfies 

it(xn) C {X ~ GIF(x) ~ inf F(x') 
x ' E E  k 

+ 2y(k(L/l)((X/_~+ 1 2 + [] 

Comparing the algorithms FDGA and CDA, we see that the advantage of CDA is 
that this algorithm does not need the special selection of the appropriate value of 
finite-difference parameter h. We may say that the selection of the appropriate h 
is an interior property of the coordinate descent method. On the other side the 
convergence rate of the coordinate descent method is less than the rate of the 
gradient method. 

Analysing Theorem 5.1 it is easy to see that the more is the value of the 
adapting parameter 0, 0 < 0 < 1, in the CDA - the more is a precision of solving 
(1) by the use of CDA. But it is obvious that as 0 is tending to 1 the convergence 
rate of CD is decreasing. 

6. Conclusion 

A special y-convex structure of the optimization problem (1) can be essentially 
used in the construction of global optimization procedures. In these problems on 
the first stage of global optimization we may apply finite-difference local descent 
algorithms, in particular, the coordinate descent method. Certainly, for the 
further improvement of the obtained approximate solution we have to use some 
other global optimization algorithm, for instance, of "covering" type (see 
[11, 12]), but the area searched (covered) by this algorithm may be much reduced 
in comparison with the initial one. 

Finite-difference local descent algorithms can be applied in global optimization 
procedures for solving problems with more complicated structure than the 
y-convex one. We give some definitions to discuss this abilities of finite-difference 
local descent algorithms. 
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DEFINITION 6.1. Let the function th(" ) be continuously differentiable on E k 

and Vth(" ) be locally Lipschitz continuous, r  ) is said to be nonsingular if the 
stationary set 

X s  = ( x  ~ EklV4,(x) = O} 

is bounded and 

JV~b(x) is nonsingular for every x E X s , 

where JV~b(x) denotes the generalized Jacobian of V~b(. ):Eg----> E k in x E E~. [] 

It is easily seen that the stationary set X s of the nonsingular function th(. ) consists 
of a finite number of elements, i.e. 

16(Xs) I ~ IXsl < ~ , 

6(Xs) = ( f  E R l l f  = r  , x E  X s }  . 

DEFINITION 6.2. The problem (1) is said to be (3/, M)-nonsingularly struc- 
tured, 3' >I 0, M E N, if there exists a nonsingular th(" ) such that 

16(x) - F(x)l 3' Vx Ek 

and 

16(xs)l = M 

(see Figure 2). [] 

For solving global optimization problems of the type (1) with sufficiently smooth 
F(- ) the multistart method is commonly used [5]. Analysing Theorems 3.3 and 
5.1, it is easy to see that if in a (3', M)-nonsingularly structured problem (1) the 
parameters 3, and M are sufficiently small (the set ch(Xs) is rarefied) then the 
finite-difference local descent algorithms, for instance, CD algorithm, are more 
preferable for applying in multistart method than local descent algorithms using 
exact gradients. Actually, if M and 3' are small, then, for instance, the trajectories 
( x  n} of CDA have the property that 

-h(F(x")} c BA6(Xs)) 

for some small s > 0  (B~(Y) denote {x [3y  EY:IIx - Y]I < e}). And therefore, for 
most x a the difference 

F(x  a) - l i m  V(x" )  

(F(. )-improvement of x 1 by CDA) is sufficiently large. The similar characteristics 
of the exact gradient algorithm can be essentially smaller because at a number of 
local minima in problem (1). 

Certainly, finite-difference local descent algorithms do not pretend to supply 
some new general method of global optimization. But we suppose that these 
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F( ) 

Fig. 2. 

algorithms can be fruitfully used in global optimization procedures as some other 
supplementary instrument. 
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